Recent revisions to MIL-STD-883 Test Method 1014 significantly tightened the leak rate requirements for all sizes of hermetic packages with failure criteria now expressed in \textit{air} with rates as low as 1×10^{-9} atm-cm3/sec (\textit{air}). By altering processing technique, including physical and electrical parameters to optimize thermal characteristics and throughput, existing parallel seam sealers for Weld/Braze and 80Au20Sn Cover seal can routinely achieve lower leak rates in the E-10 atm-cm3/sec (air).

Compound semiconductor, photonics, MEMS, microwave, power and semiconductor devices utilized for high reliability applications require hermetic encapsulation. With the value proposition of these devices and the trend towards miniaturization, significantly lower leak rate levels are required to prevent the internal package cavity from reaching the 5,000 ppm moisture limit for the device lifetime due to ingress of external ambient \textit{air}. There are several factors that determine the operating life to specification of a hermetic integrated circuit package. The most significant is the hermetic encapsulation process, which is the focus of this paper.

An example of a typical microelectronic package is based upon a 25°C/50% RH external environment with an internal volume of 0.9 cm3 and a leak rate of 1×10^{-8} atm-cm3/sec \textit{air}. This package would have an operating time to specification limit of 1.08 years from the date of sealing. For miniature packages, the operating time to specification limit is even shorter. A package with an internal cavity of 0.05 cm3 with a leak rate of 1×10^{-9} atm-cm3/sec \textit{air} would have an operating hermetic lifetime of about 219 days.

For testing hermetic package leak rates, MicroCircuit Laboratories (MCL) required test capability to detect both gross and ultra-fine leak rates. Gross leak testing was of considerable importance because a gross leak failure, by letting all the helium escape the package, can result in passing the fine leak. A single system that enabled simultaneously testing both gross and fine leaks was desired.
The flexible method for determining the equivalent standard leak rate of packages was introduced to the military standards. This method, based on the Howl-Mann equation, allows the actual test conditions to be input to the equation. MCL desired automatic processing with the Howl-Mann flexible method for simplification of the manufacturing process, increased accuracy, and ability to detect both gross and fine leaks with a single system.

![Image of the Howl-Mann equation]

Figure 2

The Oneida Research Model 310 High Sensitivity Leak Detection HSHLD®, Photograph 1, met these requirements with capabilities for small and large package leak testing. The system provides rapid, single-step processing for both gross and fine leak testing, Figure 3, with complete data collection on each test for a sealed package. ORS provide high-level support with remote PC desktop operation for training and knowledge based on 40 years of leak test processing.
As of the date of this technical bulletin, MCL has performed over 5,200 cycles, representing over 2,000 package test cycles in the Model 310 HSHLD®.

Processing utilizing the Howl-Mann flexible method provides the manufacturer benefits to utilize a more sophisticated helium bombing capability. This includes the ability to update the leak test process with actual He bomb time, which is very convenient for the manufacturer. MCL utilizes the LACO Technology Model HCS, per Photograph 2, with absolute certified transducer operation and complete digital control with programmable sampling rate for data collection provided with .csv files.
The recent update to MIL-STD-883 Test Method 1014, per Figure 4, significantly tightened the leak rates and required leak rate specifications to be stated in air. To meet these new leak rate specifications, packages were sealed with industry standard cover seal processes. These techniques were not able to consistently meet or meet with adequate margin these new lower leak rates. Additionally, the existing technique resulted in a large number of gross leakers on different package types. The large deviations in leak rates were not characteristic of a well-controlled process.

<table>
<thead>
<tr>
<th>Test Limits for All Fine Leak Methods</th>
<th>MIL-STD-883 Method 1014, August 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Free Volume of Package (cm³)</td>
<td>L Failure Criteria atm-cm³/sec (air)</td>
</tr>
<tr>
<td></td>
<td>Hybrid Class H and Monolithic Classes B, S, Q, and V</td>
</tr>
<tr>
<td>≤ 0.05</td>
<td>5 X 10⁻⁸</td>
</tr>
<tr>
<td>> 0.05 - ≤ 0.4</td>
<td>1 X 10⁻⁷</td>
</tr>
<tr>
<td>> 0.4</td>
<td>1 X 10⁻⁶</td>
</tr>
</tbody>
</table>

Figure 4
Hermetic Package Cover Seal Processing

Parallel Seam Sealing (PSS), Figure 5, provides an industry standard resistance weld joining process to hermetically seal integrated circuit packages. Precise control of the internal device atmosphere, including both inert gas atmosphere and particles, is provided while maintaining peak device temperature substantially lower than device and die attach and adhesive material requirements.

Sealing of hermetic packages, fabricated from Ceramic, Kovar™ and 1010 steel, with sizes from 1.25 mm x 1.5 mm to 100 mm x 100 mm, with a wide variety of feedthrough configurations. The package covers would range from 0.1 mm to 0.5 mm thick, with both flat and raised cover configurations with the ability to integrate feedthroughs for lenses into the covers.

Weld / Braze Sealing

Typical joining materials are fabricated from Kovar™, 29=Ni/17-Co/Bal Fe alloy, with most common plating Au over Ni for a corrosion resistant joint that will pass the salt spray test per MIL-STD-883 TM 1009.

The first step in a standard seam seal is to minimize the temperature exposure to all feedthroughs. A thermo couple was soldered into the interior feedthrough tube at the package sidewall joint at the 12 o’clock position directly below the seal ring. In this example, two standard seam seal schedules were utilized. Schedule 2 selected as the feed through port was exposed to the lowest temperature.
To verify properly welded joints, peel tests, per Photograph 3, were performed on each sealing schedule. A 360° consistent cover seal joint is a requirement of a good seal joint.

Microstructure analysis of seal joints is an important development process (unetched SEM, etched SEM, and etched optical). Below in Photograph 3b-3e are examples of seal joints which pass MIL-STD-883 Test Method 2009 External Visual requirements. Photographs 3f-3i are MCL sealed packages with no cracking or other defects at this magnification level.
Hybrid Flatpack

For economies and to evaluate the seal process with and without glass feedthroughs, a drawn package was utilized as a bathtub with no leads and a four-lead package with Corning Glass feedthroughs. It is worthwhile to note that drawn packages do not have a flat bottom nor features to easily position in a holding tool for processing. The package internal cavity of 0.9 cm3 would require a leak rate of 1×10^{-8} atm-cm3/sec air to meet current standards, which would have a time to specification of 1.08 years.
Hybrid Flatpack Sealing Schedule 1

Sealing Schedule 1 was the first developed to meet E-10 air leak rates. There were no gross leakers realized with this schedule. This leadless bathtub package realized a fine leak test mean of 6.5E-10 atm-cm³/sec air with Std Dev 0.56.
Hybrid Flatpack Sealing Schedule 2

Adjusting the key sealing process parameters, leadless bathtub packages were sealed with a lower fine leak rate of 5.4E-10 atm-cm3/sec air with Std Dev 0.4 No gross leakers were realized.
Hybrid Flatpack Sealing Schedule 3

Sealing Schedule 3 was developed and used to compare the sealing results for different lots from package and cover suppliers. These packages and covers were from Materials Lot 1. All passed gross leak; fine leak test mean of 4.3E-10 atm-cm³/sec air with Std Dev 0.35.
Materials Lot 2 with all seals passing gross leak and fine leak test mean of 4.5×10^{-10} atm cm3/sec air with Std Dev 0.35.

The Sealing Schedule 3 shows that a sealing technique has enough margin to get near identical results even with slight differences in materials resulting from different lots from material suppliers.
Hybrid Flatpack with Glass Feedthrough Repeat

Sealing Schedule 3

Packages with Corning Glass feedthroughs were then sealed with Sealing Schedule 3. All packages passed gross leak; the fine leak test mean of 6.2E-10 atm-cm³/sec for air with Std Dev 0.1 were realized.
Hybrid Flatpack with Glass Feedthrough
Sealing Schedule 4

With further seal schedule optimization, packages with glass feedthroughs were sealed with Sealing Schedule 4. All sealed packages passed gross leak; fine leak test mean of 4.4×10^{-10} atm-cm3/sec air with Std Dev 0.05 was realized.
Hybrid Flatpack Summary
0.9 cm³ Internal Volume

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean cm³/sec</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>1</td>
<td>6.5E-10 Air</td>
<td>0.56</td>
<td>16.6 Years</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>2</td>
<td>5.4E-10 Air</td>
<td>0.4</td>
<td>20 Years</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>3</td>
<td>4.3E-10 Air</td>
<td>0.35</td>
<td>25 Years</td>
</tr>
<tr>
<td>None (Materials Lot 2)</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>3</td>
<td>4.5E-10 Air</td>
<td>0.35</td>
<td>24 Years</td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>3</td>
<td>6.2E-10 Air</td>
<td>0.1</td>
<td>17 Years</td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Au/Ni</td>
<td>0.9</td>
<td>4</td>
<td>4.4E-10 Air</td>
<td>0.05</td>
<td>24.5 Years</td>
</tr>
</tbody>
</table>

Figure 7

With an optimized hermetic sealing schedule on hybrid flatpacks with glass feedthroughs, per Figure 2, the hermetic package life is limited by a leak rate of 4.4E-10 atm-cm³/sec air, which is 2.27 times less than the most stringent aerospace leak rate specification, representing an increased time to specification from 1.08 years to 24.5 years. There were no gross leakers realized in any of the sealing schedules utilized with multiple lots.
Gross Leakers

In developing the sealing process for the hybrid flatpack, MCL’s development produced gross leakers by either of two causes. The first cause is a marginal seal joint. The faster the fine leak rate, the more gross leakers were realized.

The second realized cause of gross leakers is due to processing, regardless of whether the packages and covers were compliant with specified, standard design guidelines. When this processing technique was realized as a source of gross leaks, it was eliminated from the process and in all these schedules with E-10 air leak rates; no gross leakers resulted.

The Test Method 1014 seal requires gross leak testing to occur within 1 hour from sealed packages removal from the helium bombing process. Per Figure 8, gross leakers are identified in a number of ways including when a high percentage of helium is detected.

A database of all leak testing is created for each package tested. This enables further data to determine whether a gross leaker exists. Per Figure 9, the system can identify the maximum detectable fine leak results per the particular variable inputs used in the Howl-Mann flexible method, including cavity size, helium bomb press and time, etc. In this example, if the leak rate remains faster than the identified leak rate of 7.8E-12 atm-cm³/sec helium (or 9.6E-11 atm-cm³/sec air), there is further data to support that the sealed package was not a gross leaker.
Microwave Module

Precision machined Kovar™ housings, with and without glass feedthroughs, were used for development. This package provided sealing challenges due to both corner radius and feedthrough distances from seal ring that were not within standard industry practices. The package internal cavity of 0.05 cm³ would require a leak rate of 1×10^{-9} atm·cm³/sec to meet current standards.

![Image of seal joint](image)

Figure 10

The initial sealing development of bathtub packages realized a very large number of gross leakers. For packages that did not have gross leakers, the fine leak test results were within the range of current specifications.

In developing the seal joints for lower leak rates, gross leakers on the leadless bathtubs were eliminated. However, when the seal process was transferred from the leadless bathtub packages to packages with glass feedthroughs, large numbers of gross leakers were realized per Figure 11. This process condition was repeatable on both covers with Ni plate and Au/Ni Plate.
Development of a seal process for lower cost nickel-plated covers was performed. The Ni plate and Au/Ni plate covers required different sealing processes to minimize leak rates. In either case, the glass feedthrough seals, with the sealing process utilized, appear to determine the minimal obtainable fine leak test results.

The optimized seal schedule for covers with Ni plate for packages with glass feedthroughs indicate that further seal process development for covers with Au/Ni plate would result in lower fine leak rates to extend the hermetic life of the device.

Additionally, Sealing Schedule 3 demonstrated that this sealing technique has a margin to obtain identical results even with differing lots of covers and packages from the material suppliers.
<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Ni</td>
<td>0.5</td>
<td>1</td>
<td>4.3E-10 atm-cm³/sec Air</td>
<td>0.2</td>
<td>1.3 Years</td>
</tr>
<tr>
<td>None</td>
<td>Ni</td>
<td>0.5</td>
<td>2</td>
<td>1.8E-10 atm-cm³/sec Air</td>
<td>0.13</td>
<td>3.3 Years</td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Ni</td>
<td>0.5</td>
<td>3</td>
<td>3.1E-10 atm-cm³/sec Air</td>
<td>0.3</td>
<td>1.9 Years</td>
</tr>
<tr>
<td>None (Materials Lot 1)</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>3</td>
<td>4.5E-10 atm-cm³/sec Air</td>
<td>0.4</td>
<td>1.3 Years</td>
</tr>
<tr>
<td>None (Materials Lot 2)</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>3</td>
<td>4.5E-10 atm-cm³/sec Air</td>
<td>0.5</td>
<td>1.3 Years</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>4</td>
<td>1.7E-10 atm-cm³/sec Air</td>
<td>0.19</td>
<td>3.5 Years</td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>4</td>
<td>4.4E-10 atm-cm³/sec Air</td>
<td>0.4</td>
<td>1.3 Years</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>5</td>
<td>1E-10 atm-cm³/sec Air</td>
<td>4.80E-12</td>
<td>5.9 Years</td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Au/Ni</td>
<td>0.5</td>
<td>5</td>
<td>4.4E-10 atm-cm³/sec Air</td>
<td>0.4</td>
<td>1.3 Years</td>
</tr>
</tbody>
</table>

Figure 12
Microwave Module Bathtub Sealing Schedule 5

Seal Schedule 5 is the optimum process for sealing a bathtub package with no glass feedthroughs. There were no gross leakers with fine leak rate of 1E-10 atm-cm³/sec air with Std Dev 4.8E-12.

Per Figure 13, it is interesting to note that the fine leak results were never lower than the minimal detectable leak rate per the exact conditions of the leak test per the Howl-Mann flexible method for this particular package and conditions, with minimal detectable limit for this of 9.8E-11 atm-cm³/sec air.
Microwave Module with Glass Feedthroughs
Sealing Schedule 5

Seal Schedule 5 was also utilized for cover sealing of packages with glass feedthroughs. No gross leakers were realized. Per Figure 14, fine leak results are 4.4×10^{-10} atm-cm3/sec air with Std Dev 0.4.

Figure 14
The following package examples were sealed with very limited quantities. This shows the new sealing process technique is readily applied to different hermetic packages with minimal development to surpass current specifications.

![Photograph 6](image)

Ceramic Chip Carrier Summary

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.02</td>
<td>1</td>
<td>2.4E-10 atm-cm³/sec</td>
<td>Air</td>
<td>364 Days</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.02</td>
<td>2</td>
<td>2.9E-10 atm-cm³/sec</td>
<td>Air</td>
<td>302 Days</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.02</td>
<td>3</td>
<td>1.9E-10 atm-cm³/sec</td>
<td>Air</td>
<td>460 Days</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>0.02</td>
<td>4</td>
<td>1.1E-10 atm-cm³/sec</td>
<td>Air</td>
<td>2.1 Years</td>
</tr>
</tbody>
</table>

Figure 15

![Figure 15](image)

Figure 16

![Figure 16](image)
Power Hybrid Summary
2.2 cm³ Internal Volume

Figure 17

Photograph 7

Figure 18

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Glass</td>
<td>Ni</td>
<td>2.2</td>
<td>1</td>
<td>1.3E-9 atm-cm³/sec Air</td>
<td>NA</td>
<td>20 Years</td>
</tr>
</tbody>
</table>

Figure 19
Microwave Hybrid

6.48 cm³ Internal Volume

Photograph 8

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>6.48</td>
<td>1</td>
<td>2.9E-9 atm-cm³/sec Air</td>
<td>NA</td>
<td>38 Years</td>
</tr>
<tr>
<td>None</td>
<td>Au/Ni</td>
<td>6.48</td>
<td>2</td>
<td>1.6E-9 atm-cm³/sec Air</td>
<td>0.2</td>
<td>59 Years</td>
</tr>
</tbody>
</table>

Figure 20

Figure 21
80Au20Sn Solder Cover Sealing Voids and Leak Rates

Ceramic packages with tungsten film and an Au/Ni top plate were sealed with 80Au20Sn Solder with a pre-attached preform to Au/Ni plate Kovar cover. Sealed packages were then x-ray inspected to determine compliance with MIL-STD-883 Test Method 2012.9 Rejection Criteria for Cover Seal Voids relevant to 80Au20Sn Solder Seal processing.

Per MIL-STD-883 Test Method 2012.9 Rejection for Cover Seal Voids, hermetic cover seals with 80Au20Sn Solder Cover with high voiding are found to have leak rates faster than low-void seals. Low void 80Au20Sn Cover Seals achieve the lowest leak rates which are at the minimal leak rate detection capability of the test equipment, typically 1E-12 atm-cm³/sec He.
High Voiding 80Au20Sn Solder Cover Seals and Leak Rates
Low Voiding 80Au20Sn Solder Cover Seal Joints and Leak Rates

The 80Au20Sn Solder Cover Seals with low voiding leak rates of these packages were at the lower limit of the leak testing equipment.
One Shot Welding

TO package sealing is performed by one-shot resistance welding. Short duration, high-energy electrical pulses are provided for localized heat in the welding zone with no heat build-up in the microelectronic package. This process enables control over the internal atmosphere and temperature of the device during the seal process. Materials are Grade A nickel, Kovar™ with either Au/Ni or Ni plate. Packages with glass feedthroughs through the bottom of the package are sealed in this method.

Figure 22: One shot welding electrode/package cross section
TO-8 with Grade A Nickel Cover

0.5 cm³ Internal Volume

Photograph 9

![Graph](image)

Figure 23

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Grade A Ni</td>
<td>0.5</td>
<td>1</td>
<td>6.5E-10 atm-cm³/sec Air</td>
<td>NA</td>
<td>9.2 Years</td>
</tr>
</tbody>
</table>

Figure 24
TO-8 with Au/Ni Plate Kovar Cover

0.5 cm³ Internal Volume

![Photograph 10](image)

Table

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean Std Dev Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Au/Ni Kovar</td>
<td>0.5</td>
<td>1</td>
<td>6.3E-10 atm-cm³/sec Air NA 9.5 Years</td>
</tr>
</tbody>
</table>

Figure 25

Figure 26
TO-18 with Au/Ni Plate Kovar Cover
0.05 cm³ Internal Volume

 Photograph 11

Figure 27

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Cover Plate</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Std Dev</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Grade A Ni</td>
<td>0.5</td>
<td>1</td>
<td>4.8E-10 atm-cm³/sec</td>
<td>NA</td>
<td>1.27 Years</td>
</tr>
</tbody>
</table>

Figure 28
Conclusions

Utilizing existing parallel seam sealers and one-shot welders, a new seal processing technique can be utilized that eliminates gross leakers and provides ultrafine leak rates significantly lower than those required by MIL STD-883 Test Method 1014.

For Weld / Braze cover sealing, cover seal joints will not have cracking beyond current specifications.

<table>
<thead>
<tr>
<th>Feedthrough</th>
<th>Package Type</th>
<th>Volume cm³</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Time to Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (Materials Lot 1)</td>
<td>Microwave</td>
<td>0.05</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (Materials Lot 2)</td>
<td>Microwave</td>
<td>0.05</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Microwave</td>
<td>0.05</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Microwave</td>
<td>0.05</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Microwave</td>
<td>0.05</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Microwave</td>
<td>0.05</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (Materials Lot 2)</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corning Glass</td>
<td>Hybrid Flatpack</td>
<td>0.9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Ceramic LCC</td>
<td>0.02</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Ceramic LCC</td>
<td>0.02</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Ceramic LCC</td>
<td>0.02</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Ceramic LCC</td>
<td>0.02</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed Glass</td>
<td>Power Package</td>
<td>2.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Large Module</td>
<td>6.48</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Large Module</td>
<td>6.48</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One Shot Welding

Glass	TO-8 (Grade A Ni)	0.5	1
Glass	TO-8 (Kovar)	0.5	1
Glass	TO-18 (Grade A Ni)	0.05	1

The time to specification, after seal, of a hermetic package can be determined by the leak rate, the moisture sealed into the package at the time of seal, outgassing of materials into the sealed headspace, and external environment conditions of temperature and humidity. Excluding other factors, the leak rates using this new technique provided the longest time to specification.

Figure 29
For 80Au20Sn Solder Cover Seal processes, in addition to obtaining the lowest leak rates, compliance with MIL-STD-883 Test Method 2012.9 Rejection Criteria for Cover Seal Voids is required. The new seal technique provides for very low cover voiding, passing this requirement with very wide margins.

<table>
<thead>
<tr>
<th>Package</th>
<th>Joining Materials</th>
<th>Seal Type</th>
<th>Volume cm3</th>
<th>Schedule</th>
<th>Leak Rate Mean</th>
<th>Cover Seal Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.005</td>
<td>POR</td>
<td>1.1E-10 atm-cm3/sec Air</td>
<td>Pass Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.005</td>
<td>POR</td>
<td>1.1E-10 atm-cm3/sec Air</td>
<td>FAIL Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.0002</td>
<td>POR</td>
<td>1E-10 atm-cm3/sec Air</td>
<td>Pass Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.0002</td>
<td>POR</td>
<td>9.8E-10 atm-cm3/sec Air</td>
<td>FAIL Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.2</td>
<td>POR 1</td>
<td>4.8E-10 atm-cm3/sec Air</td>
<td>Pass Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.2</td>
<td>POR 16</td>
<td>2.2E-9 atm-cm3/sec Air</td>
<td>FAIL Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.27</td>
<td>POR 1</td>
<td>4.9E-10 atm-cm3/sec Air</td>
<td>Pass Test Method 2012 Lid Seal Void</td>
</tr>
<tr>
<td>LCC</td>
<td>Au/Ni on top Kovar 80Au20Sn/Au/Ni/Ti</td>
<td>80Au20Sn Solder</td>
<td>0.27</td>
<td>POR 5</td>
<td>2.2E-9 atm-cm3/sec Air</td>
<td>FAIL Test Method 2012 Lid Seal Void</td>
</tr>
</tbody>
</table>

Figure 30

Endnotes

2 ORS Model 310 HSHLD™ standard sensitivity is 5E-12 atm-cm3/sec helium with a standard chamber. The system is calibrated with a low- and high-leak standard.

About MicroCircuit Laboratories

MCL provides development and prototyping services for component level, low temperature, hermetic package encapsulation and test processes, from initial design through all phases of production. Processes are delivered with E10 atm-cm3/sec air leak rates, magnitude lower than the most critical aerospace requirements per MIL-STD 883 Test Method 1014 Seal.

MCL’s capability includes materials design software, class 1 cleanroom processing, pre-seal moisture removal processing, low temperature hermetic package sealing with parallel seam
sealing or one-shot low temperature resistance joining, inert environmental processing with 0.1 PPM H₂O and O₂ environments, automatic gross and fine leak detection and Particle Impact Noise Detection. On-site metrology includes Hitachi SEM, GT Real Time X-Ray, Olympus Opto-Digital Microscopes, and Mitutoyo CNC Measuring.

All processes are easily transferred to captive or merchant production partners.

For further information please contact:

info@microcircuitlabs.com
610-228-0161